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1. INTRODUCTION

Let
Cz)=co+ciz+cyz2+ oo, ¢o#0 (1.0
and
D(zy=d,z" "+dyz *+dyz *+ -, d,#0 (1.2)
be the power scrics expansions of a function f{z) about the points z =
and z= o0, respectively. McCabe [17] and McCabe and Murphy [187

have introduced the M-table for the series C(c) and D(z) through
M-fractions of the form

o a a,z asz
T4 bzH U+ hyz+ 4+ byz 4
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Fic. 1. The M-table.

The above authors formulated certain rhombus rules and also the explicit
Hankel determinant expressions for computing the coefficients of
M-fractions. These schemes depend heavily on the normality of the power
series C(z) and D(z). Cooper et al. [6] have generalized the M-table to the
non-normal case without imposing restrictions on the coefficients of the
series. For full details of basic informative results on the M-table we refer
to [17] and [6]. We shall begin our discussion by introducing standard
definitions and notations, mainly in accordance with these two important
contributions.

We define the M-table as an infinite matrix with (m, n)th entry M, ,
(see Fig. 1), m=0,1,2,.., n=0, +1, +2, ..., where

M, = Py o(2)/Qon.n(2)
which is determined by
C(2) Qo n(2) = Py n(2) = O(27 "),
D(z2) @y n(2) = Py n(z)=0 (z"7),

where O(z*) denotes a power series in ascending powers of z beginning
with a term in z* while O _(z*) represents a series in descending powers of
z. Depending on the correspondence of M, , with C(z) and D(z), the
M-table is divided into three regions as shown in Fig. 1. The entry M, ,,
identically zero, does not belong to any of the regions. In region CD, M, ,,
corresponds to the series C(z) and D(z) simultaneously. The constituent
polynomials in M, , are given by

(1.4)

O a(2)= 3 . (1.5)
i =0

i=
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and
= . .

Y p7, in region C

j—=0

m 1

P, ,,(z)=< Y p,2 in region CD (1.6)

;=0
—n—1

N p,2, in region D.
i 0

]

The entries in region C are Padé approximants [1, 2, 11] of the series
C(z) with

M, (z)=[(n—1)m]c(2),

a rational function whose numerator and denominator polynomials are of
degree at most (n— 1) and m, respectively. The typical element in region D
can be written as

M, _,=E% ™).

an element in Wynn’s E-array [26] for D(z).

An entry M, ,(z) in the M-table is said to be normal, if it is not equal
to any other entry there. An M-table is normal, if every entry in it is nor-
mal and the series C(z) and D(z) themselves are said to be normal. The
non-normal case studied in [6] and the continued fraction (CF) expansion
suggested therein motivated us to consider the problem of constructing CF
for a pair of non-normal series.

In Section 2 we consider a class of general M-fractions of the form

_ a, a,z*® a,z™
IR I Ty

M(z) (1.7}

in which a,, b, are complex numbers and «,, 8, are positive integers such
that 2, + 2%, + -+ + 2, <+ f,+ - + B, (we take 2, =0and f,=1). We
also present a method for its construction. The method is based on an algo-
rithm given by Frank [8] for expanding an arbitrary power series into a
C-fraction. The block structure of the M-table is considered in Section 3. In
Section 4 we consider a general T-table, a generalization of the M-table, for
a pair of formal Laurent series (fLs). A T-fraction expansion for a pair of
fLs is also given there. Section 5 contains exampies illustrating some of the
concepts mentioned above. Finally a few concluding remarks are added.
There exist many morc two-point Padé tables in the literature. The
Laurent-Padé table [3], Chebyshev-Padé table [9,20], and Colorado
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table [16] sometimes posscss quitc interesting structures. In [5] it is
shown that the M-table is related to the moment problems. A mixed Padé
table and its properties are critically considered in [7]. A two-point Padé
table of the brick structure type has been discussed in [15]. Two-point
Padé¢ tables for general M-fractions (normal or non-normal) have been
studied in [21]. Also a two-point Padé table associated with Schur
sequence has been dealt with in [23]. In [24], some useful ideas concern-
ing the structures of such tables for general rational functions are also
furnished.

2. EXPANSION ALGORITHM FOR A GENERAL M-FRACTION

We shall now consider the general M-fraction of the form (1.7). Its nth
convergent P,(z)/Q,(z) is defined by means of the fundamental recurrence
relations

P, (z)=(1+b,2" P, \(2)—a,zP, Az), @1
0,(2)=(1+b,2") 0, 1(2)—a,zQ,_5(z), n>2
with
Py=0,Qy=1, Py=aqa,, Q,=1+b,z

Multiplying the first formula of (2.1) by Q,_,(z) and the second by
P, _,(z) and then subtracting the latter from the former we obtain

PnQn—l_QnPn—l=anzzn(Pn lQn 2_Qn an 2)' (22)
Applying this result successively, we end up with
PnQn I_QnPn I=ala2"'an211’az+->“+an' (23)

It can be easily shown that the highest power terms occurring in P,(z) and
Q.(z) are a,byby---b,z5+ 5+ +b and b b,-- b,z M+ respec-
tively. The difference of two successive convergents of (1.7) is

P.(2) P, \(2)
0.(z2) Q,-1(2)
=P"(Z) Qn I(Z)_Qn(z) Pn—l(z)
0.(2) 0, . (2)
alaz‘”anzal txpgt oo 2y

={1++(blb2bn l)zbnz2(ﬂ1+ﬂz+“"ﬂn l),/f”}. (24)
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1

Expanding the right side of (2.4) in powers of - and ¢ ', we have

P,,(Z)_ Pn—l(z)
Qn(z) Qn 1(2’)

=d,dy @,z T (2.5)

P
Qn(z) Qn 1 Z)_(ble'”bn l)zbn
£2(p1+ B2t Fhe N Bn it g (2.6)

n 1(2) a,d;---4a,
(

respectively.

Equations (2.5) and (2.6) imply that the power series cxpansions of
P, (2)/Q, .,(z) about z=0 and z=oc agrec with that of P, (z)/Q,(z),
respectively, up to the terms through ****' " !'* and
g A Bt e 0+ B (ximxd -2 Henee, by Eqgs. (2.1), (2.4). (2.5,
and (2.6), the CF (1.7) determines uniquely a pair of power series of the
form (1.1) and (1.2). Converscly, given this series-pair there exists a CF of
the form (1.7). The uniqueness problem has already been considered in
detail [21].

It is important to determine the quantities a,, %,, ,, and f, of {1.7)
from the series-pair. In the case of the nth convergent of (1.7), we have

Pn(:): Z [7:51; Ty = Z [‘l’ p:,,zalb?.'”hn (27)

i 0 =2

Q,,(Z): Z ql:i; On= Z [319 qa,;zblbz'“bna o= i (28)
i 0

i—1

From Egs. (2.5) and (2.6) it follows that

("(2)_1))1 l(z),/’Qn 1(2)

PR SO0 I 5 I TR .

~dUy U,z " as z—-0

D(Z)—P,, l(z)//Qn 1(2)

a LR/ |
SO T B R L e O A T as z-— .

(bl'”bn l)zhn

By virtue of (2.7) and (2.8) the above equations can be written as

C(:) Qn—l(z)_l)n --1(2)

~dajay-eaz™t as z-0 (

[
el
-
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D(z)Q, (2} =P, _(2)

Nuﬁz—{ww---olin)—(«1+~~+an)}, as z—oo. (2.10)
b, b,

Knowledge of P,,_,(z) and Q, _ ,(z) enables us to determine a, and «, from
(2.9). Once a, and «,, are determined, b, and 8, can be found from (2.10).
However, we present here a comparatively more convenient scheme,
described in the theorem which follows. In this method, only the coef-
ficients of the concerned series and those of the denominaitor polynomials
of convergents arc actually involved, The orthogonality structures that
exist between the denominators of the convergents of the CF and the cocf-
ficients of series have also been revealed. The thcorem can as well be used
for converting an M-fraction into a pair of power series. For the sake of
simplicity, we follow the same matrix format originally adopted by Frank.
The Eqgs. (2.9) and (2.10) are, indecd, useful for proving the theorem.

THEOREM 1. Let C(z) and D(z) be a pair of formal power series as given
by (1.1) and (1.2}, respectively. Set

a,=c¢o, by=co/d,, D,=d,, 2,=0, ,=5,=1 (2.11)
and let

Qo(z)=1, Q.(z)y=14 b,z (2.12)
For r=2,3, .., construct the polynomials
Q(z)=14+4q, 244, ,2*+ - (2.13)

and determine the numbers a,, b, and the non-negative integers x,, f3, by
means of the recurrence relations

1
qr- 1,1
[C,,,C"__l, C"_z,...]
q,_ 1,2
_{0 if o+ --4a,_ <n<a + - +a,
a,a,---a, lj‘ n:al+'12+"'+a,,

. Jor i<, (2.14)
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1
4q,_
[dydysivdy ]| &5 =D,
qr 1.2
5,21 in such a way that the least value of s,
ensures D, #Q), {2.15)
b,:%-D, L (2.16)
B,=a, +5,—5,_, (2.17)
0.(2)=(1+b,2")0Q, |(2)—a,z"Q,_,(z) (2.18)
Then
Miz)=—2 LI B (1.7)

Tl b =14 by P T+ by

The polynomials Q,(z) in (2.18) are the denominators of the convergents of
(1.7).

Proof. The numerator polynomials of (1.7) are readily defined by (2.1).
To prove the first half of the theorem it is sufficient to show that the
identity

C(2)Q,(z)—-P.(2)=aay- @, 2777 " F 4 (29)

is true for all values of r. The path for establishing this relation for any
is exactly the same as that given earlier [8]. With regard to the series D{x)
we also follow similar arguments. It is straight forward to verify that

D(z) Qulz) - Polz) =220 4 .. (2.20)
with S,=(B1+B2+ "'l}r)_(fxl+a2+ +0(,).

Let us assume that

=(a,az---a,,1),/(b,b2~~b,,+,)+

=3 4]
&

for r=0,1,2, .., n (2.21}

D(z) Q,(z)— P.(2)

The proof of the theorem would be complete, if it were shown that (2.21)
holds for r=n+1.
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Now

D(Z) Qn+l(z)—Pn i 1(2)
= D(:)[l +bn t lzﬁnHQn(z)_an t lzanﬂQn—l(z)]
— [ 40,27 ) Po2) =,y 2P, 1(2)]
=(1+b,,,2")[D(z) Q,(z) - P,(2)]
_a"+lzﬂn--l[D(2) Qn l(z)_Pn—l(Z)] (222)
It is known that @, . (z) is of degree f,+f,+ --- +B,., and P, , (2) is
one degree less than-that of O, , (z). Therefore the conclusion is that all
the positive power terms in D(z) Q,_ ,(z) are the same as those in P, _ (z).

By (2.15), (2.16), and (2.17), the first negative power term occuring in
(2.22) is

(ayay---a,,)/(biby---b,,,)

2(ﬂ|+/f7 fooeed Praz) s At o 4 2p42)°

that is,

(alaZ ”'arz+2)t/(blb2 ”'bn-f-l)

S

Consequently (2.21) holds valid for r=n+ 1, and therefore the thcorem is
now proved.

3. BLOCK STRUCTURE OF THE M-TABLE

In [6], it has been proved that equal entries of the M-table form a
square block and its order is equal to the excess correspondence of the con-
cerned entry with the two series. With this in view, we shall now consider
the formation of blocks in the M-table by convergents of (1.7). The
denominator polynomial Q,(z) of (1.7) is of degree ,+f,+ --- + f,. By
virtue of our construction, the nth convergent P,(z)/Q,(z) represents the
entry My 5. 4 of the M-table. By (2.5) and (2.6), it matches the first
ay+ar+ - +a,,, terms of C(z) and {f, +2(f,+ B+ - +8,)+
foer—(ay+oa,+ -« +a,, )} terms of D(z). But it is normally expected
to match only the first (8, + 8, + --- + [,) terms in each of the series C(z)
and D(z). Therefore the excess corresponding terms of P,(z)/Q,(z) with
C(z) and D(z) are

(U,,={(11+a2+ +xn—l)—(ﬁl+ﬂ2+ +ﬁn)} and
Pn={(Ba+ P+ - +B,. ) —(a, 4o+ -~ +2,.,)}, respectively.
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Hence the total excess correspondence of P, (z)/Q,(z)is B,.— B,, that is,
8,. 1 — 1. Thus the order of the block formed by the nth convergent of (1.7)
is f,,,— 1. With respect to the cxact position of My oy g0 tOC

block boundary extends upto w, entries below, u, entries above, and
{w, + u,) entries on the right side.

We shall consider the block structure of the M-table in terms of Hankel
determinants of C'(z) and D(z). Equation {1.4) gives the system

Codot ¢, 141+ - 0, mqm:()

Cn—lq()+cnql + o +Cn—m+!(1m:0
(3.1
Copom 190 Cim -24 + o +C,, Iqm:O

c,=—d for j<O0

defining denominator of the entry M, ,. Wec have here m equations in
m+1 unknowns g¢,, ¢,,..4,.- As in the case of standard Padé
approximants [2], we impose the normalization condition g,=1 so that
the numerator and denominator of M, , have no common factor. Since all
entries of the M-table can be realized as the convergents of M-fractions,
this concept of normality is quite convenient. The above system has a
unique solution for ¢, ¢,, ..., g,, If the dcterminant of the system is non-
zero. Associated with the pair of series C(z) and D(z) we have the Hankel
determinants D, ,, defined by

Co m Cooma1 €y !
D, .= o :m'l C"_:m” C:" ! ;= —d ;for j<0
e ¢, e Cpm
m=0,1,2, .., n=0, +1, £2--- (3.2)

The Padé table of a general serics, its associated C-table, their block
structures, and the various ingredient properties and theorems are all very
well known [2, 11, 25]. Since region C of Fig. 1 is a part of both the Padé
table and the M-table, the notion of Padé approximant, the Padé table,
and the various connccted concepts can also be extended to the M-table.
Therefore, we can apply the same arguments as we do to the Padé table of
a single series. As the properties of the Padé table (region C) and the
E-array (region D) arc familiar, we shall confine our attention and
arguments to the region CD only of the M-table.
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To aid our discussion, we shall define the following:

9o Po
a={ ] =)
g P2
Cp Ch_y Cn—m
Rpu=| 7 o TG men o —d for j<0
Convm 1 Convm- 2 Cn—1

—¢, O 0 .- 0 0 0-
¢y ¢ O 0 0 0
¢ ¢ ¢ -+ 0 0 0
Sm,n= E E
0 0 0 ---d d, dy
0 0 0O 0 d, 4,
.0 0 0 0 0 4,

S, » 18 an (mx m+ 1) order matrix in which cach row is made up of either
¢’s or d’s only. Of the m rows of S,, , at least n rows are made up of ¢’s
when n is positive and ¢’s when n ncgative. The Eq. (1.4} can then be
expressed in the form

R, .q=0 (3.3)
S 14 =P (34)

Let us consider the table of D,, , determinants, defined by (3.2). The
columns and rows are again labelled by m and », respectively. We name
such a table a D-table. The first column elements in this table are just unity
and the second column gives the coefficients of the respective series. We
now investigate what happens when one of the entries of the D-table
vanishes. For definiteness let us assume that D,, , =0 and ail other deter-
minants remain non-zero. Consider the following block of four entries of
the M-table in the region CD and its corresponding Hankel determinants:

Mm—l,n—l Mm.n—l Dm—l.n'-l Dm,n—l
Mm-‘ 1Ln Mm,n Dm l.n 'Dm.n
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(i) When D,, ,=0, Eq. (3.3) has a solution for q where ¢, =0. Then
the solution p given by Eq. (3.4) has p,=0. This shows that the polyno-
mials P, ,(z) and Q,, ,(z) of M, , have the common factor z. After z, is
cancelled M,, , reduces just to M, _, , ;.

(iiy When D,, ,=0, the equation R, , ,q=0 has a solution in
which ¢, =0. In the solution given by S,, ,_,g=p we have p,, ., =0 sc
that M =M

(i) The equations R, _, ,q=0 and R, ,,.,9=0 combined
together give a set of m homogeneous equations

m.on 1 m-1n—1"

Cpe 1‘10+Cn 2‘]1+ +Cn---mqm l:O
qu()+cn—-lql + oo +Cu m+19m 1:0

Corwm :‘10+ Crvm-39 + - +Cn 19m— =0
c,=—d ; for j<0
If D,, ,=0, the above system can possess an infinite number of non-trivial
solutions. Hence the solutions offered by the above equations are propor-
tional and so also are the solutions given by S,_,, q=p and
S 1.q=p Therefore M,,_, ,.=M,, ., |

Thus the four entries in the block considered above are identically equal
to M,, ., , simply because of the fact that D,, ,=0. The condition for
M, . to be distinct from other entries is that the determinants D,, ,
D,,...D,.., and D, _, ., should be different from zero.

We note that the C- and D-tables are essentially the same. Consequently
the block structure of the usual Padé table and that of the M-table are not
actually different. However, we present some of its main aspects briefly
here. As in the case of the C-table, the D-table can also be calculated recur-
sively by Sylvester’s cross-rule formula [11]

n -+

N
W .C .E, WE=NS—-C? (3.5)
S

Now let D, , ., also be zero in addition to D,, , and further let us take
D,,i..yand D, ,,,, as non-zero. If we now take successively the
entries D,,,, ,and D,,,, , ., of the D-table as the central elements C in
(3.5), it follows from the assumptions regarding non-zero elements that
D,, ,and D, , ., are also zero, thus completing a 2 x 2 block of zeros
in the D-table. We have already seen that an isolated zero of the D-table
means 2 x 2 block structure in the M-table. Applying this correspondence
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to each of the elements of the zero-block in the D-table, we arrive at a 3 x 3
block structure in the M-table. In gencral an r x » zero block in the D-table
leads to an (r+ 1) x (r + 1) array of identical elements in the M-table. This
(r+1)x(r+1) array of equal entrics is said to be a block of order r.
Frank’s theorem [8] on Padé tables can also be extended to the M-table.
The explicit version of the theorem is the following:

THEOREM 2. Let D,, , be as defined in (3.2). A set of necessary and
sufficient conditions for the M-table for the series C(z) and D(z) to contain
the element M,, , as a block of order r can be summarised as

(i) D, .#0
(ll) Dm‘n+|7é0
(iit) D,y ,#0
(1V) Dm—r+l,nbr~l¢0
(V) Dy ins; =04 j=1,2,r

Proof of the above runs similar to that in respect of the said theorem.

4. GENERAL T-FRACTIONS AND T-TABLES

We shall now show how we might, in a quite gencral case [12-14],
apply the method of M-fraction expansions to the construction of
T-fractions. The method consists in replacing the given pair of series by
another pair. Let

7
Cz)=Y cfz b +ciz+e 2+ - (4.1)
k=0

and

u
D(z)= Y d¥:* +dz "+dyz P+ .- (4.2)
k-:0

be the given pair of fLs. Let

8(z)=0,z+ 8,22 +8,2° + --- 4.3)
and

Mz)=lo+ Az Y4,z 24 e (4.4)
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be the new pair obtained from the original through the relations

—d* <ig
5—{‘ o Isisu (45)
¢ i>p
dF—c¥. j=0
L={d—c¥ = 1<j<y (4.6)

d, J>7
On division by z, this new pair gets standardized to the pair considered in
Section 2. Therefore, by applying the theory of M-expansions we can
obtain a similar table of rational functions, which we may call
T[u, v]-table. These rational functions are the convergents of T-fractions.

described below:

r\l

Z di: +Z e F e 40,24 o 44,7

k—1
5/0 11'“I a¥):z ag)z
1+bmv+l+b”’ 1+bYz+
j=0, with 09 = c# )
7] v
:): Z dk*;_'k+ Z ('l:_";'-k_+_/‘tu_+_/-tlz fyo _+_/“1. T [VERS
ko1 L=
). .z U b at 1z
i 2 . j;] (48)

1+b{72 +1+b% 7z

The coefficients of the above T-fractions are directly calculated by the
following recurrence relations used by McCabe [17] for M-fraction expan-
sions.

Initial relations:

a(ln=0’ j=0, +1, +£2, ...
h(IO) =9,/
b= 8,1/, >0

By V=i, fh, j=L

(4.9}

Continuation relations:
U+ o pU) — U)o U+ 1)
at xb =a; xb/t),
af.’+”+b(.j‘”=a(” +b(/‘)’
(7 Dy hU i 0 e pt i 1
ai+1 xb1+l ax+l Xb *

a7V b V=gl D pt D, (4.10)

il

i=1,2.3,..,j=0,1,2, ..
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Given the pair of fLs ((z) and D(z), Jones and Thron [14] have given
the necessary and sufficient conditions for the existence of a general
T-fraction
8 7
T(z)= Y d¥*+ Y c¥z7%+
k=0

k=1

alz 022
l+bz4+1+byz+

(4.11)

There the explicit expressions for the coefficients of 7-fraction have been
given in terms of the Hankel determinants. We note, however, that the
results could be made much morc general.

Let T, ,, with m=0, 1, 2,.. and n=0, +1, +2, .., denote the (m, n)th
entry of the Ty, v)-table. Its corrcspondence with the series C(z) and D(z)
is given by

C(z)-T, ,=0"*"*') and D(z)—T,,=0 (" 7). (412)

Fic. 2. The Ty, y]-table.
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If we write

}r'm. n= Pm, n(z)/Qm, ,,(Z'},

then T, , can be determined by

C(2) @y l(2) = Py u(2) = Oz "4 1)
D(z) @, Wz} =P, ,(2)=0 (2").
Similarly to the M-table, the Ty, v)-table is divided into three regions
as shown in Fig.2. The entry T, , cquals Y% _, d*z*+3;_ ,ckz *
The remaining first column elements represent the partial sums of the

correponding J- or A-series together with the sum T, ,. The denominator
coefficients gy, ¢,, ... 4,, of T,, , are determined by a system

C’n+1‘10+ €,4q, + o +€” m+lqm=0
€ri2qot €, t+ - +e, m—?_qm:O (4‘4}
er1+n1q0+en o-m——}ql+ et e, qm =0

where

L _{o i>1
T1-i ., i<o.

Therefore, we define the Hankel determinants of the series C(z) and D(z),

€ matl Ca_me2 7 Cp
Hm,nz en—:m+2 Cu mai3 T €t \
€ €n41 T Cpm -
m=0,1,2,..,n=0+1, +2, .. (4.15)
with
Hy,=1

The normality of 7-table requires the non-vanishing of the Hankel deter-
minants. We shall now present a method for obtaining a general 7-fraction
expansion from a given pair of fLs.

THEOREM 3. Let C(z), D(z), 6(z) and 4(z) be the power series as in
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(4.1)-(4.6). Set 2,=0, Dy=1, sq=0 and the polynomials Q (z})=0,
Qo(z)=1. For r=1,2,3, ..., construct the polynomials

Q(z)=1+q, 244,27+ - (4.16)

and determine the numbers a,, b, and non-negative integers a,, 8, by means
of the recurrence relations

1
[5na 6,}—1, 5,,_2,...] q’ 1
4. 1.2
= 0 if ap+o,+ - 42, <n<ag+oa+ - +a,
= alaZ"'ar lf n=10+1|+.,,+ar
d;= —4 ;for j<O (4.17)
1
i 1 q.-1,
[Ax,’)'x,+l="~.s-,+2’~~-] 1

qr_ 1,2

=D,, s, =20 in such a way that the least value of s, ensures D, #0

(4.18)
b,=%-D, i and B.=a,+5,—5,_, (4.19)
0.(2)=(1+b,2") 0, (2)—a,z"Q,_y(2). (4.20)
Then
T)= 3 dp+ ¥ ee e —i 227 (421)
= ; z .
Z= o ks Lotk T+b,27 — T+b,2P —

The polynomials Q,(z) are the denominators of rth convergents of
(4.21). The numerator polynomials of the convergents are determined by
the recurrence formulae

P (z)=1,

Po(z)

Il
I M=

drzk+ Y crz 7k (4.22)
k=1 k=0
P(2)=P, ((2)(1+b,2")—P, ,(z)a,:z* r=123,..
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The method of proof here is very similar to that of Thecrem 1 and so it is
omitted.

It is rather important here to take note of onc essential fact: whatever
the values of 4 and 7y, the forms of the 8- and A-serics remain unchanged.
As a result the forms of Hankel determinants, denominator polynomials of
T-tables, nth (n = 1) partial numerators, and denominators of the relevant
CFs remain the same. One may without much difficulty verify that the M/
and T[u, y)-tables have the same set of possible block configurations.

5. EXAMPLES

The identitics of Srinivasa Ramanujan [19],

22 -4
1+:z - A
* +]+23+1+:5+
X 1_28n+3 l_zsn~5
:H( 8!1—-1)( 3,,4-7)’ ‘:!<l (5‘:)
n=0(l—z )(1_: )
and
- 2 3

N

=11 1+ "+, zl <L (5.2)

are the remarkable examples for the general two-point CF expansions con-
sidered in this paper. These CFs have been discussed by Gordon [10] and
Carlitz [4]. Slater [22] gave combinatorial interpretations to the above
identities. All these authors have mainly considered the proof of the iden-
titics. We are concerned with much more and shall now consider these CFs
from the point of view of Padé approximants. By introducing a factor
(1 —z*"'%)in the numerator and denominator of the infinitc product (5.1)
and by actual multiplication of the factors, one can get

2 4
- &~

I+z+

1+ +1+2°4+

3 39
-2 -4z 42823 %4 . ..
= . (5.3}

- 22 7 S
l—z—z27 42042227 %4 ...

Denoting the ratio in RHS of (5.3) by f,(2)/f,(z), the following recursion
relation can be verified:

fn !(Z)_(1+22" l)/;z(z)=22”./;1il(:)’ ’7:1?29 37 ] (54)

640 64 -5
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where the leading term in every series is unity. The relations (5.4) lead to
the CF expansion (5.3). The CFs (5.1) and (5.2) not only correspond to a
single infinite product, as given above, but also give risc to another infinite
product expressible as a single series in decreasing powers of z. A nice
example for the general M-fraction would be the reciprocal of (5.1),

1 z2 z*
l+z4+1+22+1+2°+

(] _28n+l)(1 _28n+7)

znl;lo (1 _28n+3)(] _38n+5)'

(5.5)

From the dcfinition of the series C(z) and D(z) corresponding to the
CF(5.5), the coefficients of the series are connected by

c,=d, 1, n=0,1,2,.., (5.6)
where

Ciz)=1-z+422—z*+2° =27+ 28 - 22+ 22" — 3212
+2z13 -2z 4+ 4210 — 427 4 4219 — 6270 4 522!
— 6224922 — 625+ 7Y — 1227 +92%° — 10z
+ 1623 — 1327 + 152°° ~ 222°° + 1723 — 202%°
+292%° —212* 4252 — 382% 4+ 28z — ..., (5.7)

In view of the symmetry in the coefficients of C(z) and D(z), we may write

1 22 z*
l+z+l+2+1+25+
( )_ lc_ol (1_28n+l)(1_28n+7)

“ 28n+3)(1_28;105)

= ’; (; 1—z (8n+l)}{ —z (g,,+7)} (58)
; I_I {1__7 (8n+3)}{1 _(8,,+5)}.
The first few convergents of (5.8) turn out to be
AL Rk 142
QI_1+Z’ Q2—1+Z+22+Z3+:4s
(5.9)

P, l+23+z4+2°4 28
0: 14z+224+23422%422°4+2%4 27 + 28+ 2

Gy ver
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Mg-3 My—3 Mz-3 M3z Mi.3 Mgy M.z Myp.z Mg.g Mgy ...

Mooz Moo Moo My gt Mg Mg Moo Mrp Mo ' Moz
R

Mot Mmoo My Mgy i Mict Msq Mg Moy Mgy Mg

Mo,0 ; Mo Mao Mag | Msp Mso Msgo Myp Mgo E Mg

Mo, 1 :L_M1_1_ My __My__‘} My Mgy Mgy My, Mg, g Mg 1

Mz M2 My My, ; My2 Mgy Mgy, Myop Mgy ; Mg 2

b e

FiG. 3. The block structure of convergents of (5.5) in the Ad-table.

The symmetry in the coefficients of convergents shows that these con-
vergents approximate both the series C(z) and D(z). The block structures
formed by the convergents of the M-fraction (5.5) are shown in Fig. 3.
The blocks are due to the vanishing of the set of Hankel determinants of
the concerned series:
D1+i,~1+j=0’ Lj=1,2
D4+i,72+j=07 i9j=1>23374

Doyi34,=0,  j=1,2,.,6

The vanishing of the above determinants can be verified with respect to the
series (5.6) and (5.7).

The CF (5.1) emerges as an excellent example of the general T-fraction
z? z* _ {C (z)

Z 2 (5.10
SRR gy D(z), (5.10)

I+

where C(z) and D(z) will have to be identified with the series (4.1) and
(4.2), respectively. The coefficients of these series are related through

cF=dr, c;=dg
and {5.11)

Chyp1=4d,, n=1,2,3,..,
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where

C@y=14z4+22 -2 25428422 +210- 2,12 3,3 214
+ 3264+ 4277 4 4218 4770 6221 — 5772 4. 5%
+92%° + 6226 — 8228 — 122%° —92%° + 1223 4 162
+ 1327 — 1426 — 22737 — 17238 4- 18240 + 2974
+ 2124 —262% — 3824 — ... (5.12)
The block configurations of convergents of (5.10) which are actually the
reciprocals of (5.9) in the 7T-table would be as shown in Fig. 4.

The following are zero-blocks of Hankel determinants of the series C(z)
and D(z) associated with the above block structure:

Hi,*1+j:(): laJ=152

H3+i,~2+j=0= i9j=152,374

Hyiy_3.,=0, i,j=12,..,6

The above assertion can be checked with respect to the series (5.11) and
(5.12).

_______________ -
o2 M-z %21 T3 T2 Ts2 Te2 Trez : T -2
I ]
1.1 Ti-1 Tom X Ty B Tsa Tea T T
| , |
) T T
:Too To o1 %0 %o Yo so 70 : 8,0
I

o Ty Tar Ty Ty Tsa Teq Top ! Tgy
L= %+ Y :

[

-
T3 T3 T3 M3 T3 Ts3 Te3 T3 LTa,a

i

FiG. 4. The block structure of convergents of (5.10) in the T[1, 0]-table.
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The CF (in 5.2),
4t 2
14z 1422 1+47°

o (1 +Z2n+1)

Clz)= 11

ol (1422
- : N (5.13)
D(z)=2 [] 02

oo ()

serves as an example of T-fraction (u=0, y=0) given in Section 4. The
power series C(z) and D(z) associated with. CF (5.13) are

C)=14z—2> 42— 20— 2" 4228 4+ 2° — 27104 2212
+21 =321 471 4710 + 22V — 578 — 22%° + 52%°
+2z% — 6272 =322 + 82 + 42— 9770 — ...
D(z)=2(1—z 14227232344z —623+927°~12z""+ 1628
~22z7% 42927103821 + 50712 — 64z "3+ 8271
— 1052715 4132271 — 1662717 4208z 18 — 2582 1°

+3202720 395,72 1 484722 59223 47227 %
~876z %+ -..).

The blocks of convergents of (5.13), namely,

_}l 142z _}2 1422 +27%427°

0, 1+z' 0, ltz+22+2°°

Py 1422422 +42° 4420+ 227+ 22°
0, 14242224322 4244225427

are shown in Fig. 5.
Since the set of Hankel determinants

Hll
H3+i,ja la]=1’2
H6+i,j’ i,j=1,2,3
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1

-1 Tor 2a B T oy Tea

oo | To o | o w0 50 | Teo Tr0
T0—1“-5 T Toa i T30 Tan o T i Te,1 Tra
o2 _ _71,—2_ T, _E 52 %Wz 52 ez Tn2
T3 T3 T3 T33 T _7_5_3—!_ Te3  T73

FiG. 5. The blocks of convergents of (5.13) in the 70, 0]-table.

happen to be zero, we obviously have certain block structures in the
TT0,0]-table also. The convergents of Ramanujan’s CFs are the
approximants of two power series simultaneously, but they are not two-
point Padé approximants. If the concerned two series represent the same
function, then these CFs will possibly yield two point Padé approximants
to the function. However, they do serve as good examples illustrating many
of the aspects considered in the present paper.

6. CONCLUDING REMARKS

A working procedure has been provided here for the construction of a
general two-point continued fraction from a given pair of non-normal
power series. This work was really motivated by our deep desire to study
non-normal approximants using continued fractions as essential tools. We
do feel that Evelyn Frank’s algorithm for non-normal power series with
integer and rational coefficients could be the best method available at least
at present for obtaining two-point continued fraction expansions. We
further observe that all the zeros and poles of the convergents of the
general M-fraction given in Section 5 lie very near the circumference of the
circle |z| = 1. Further study on the significance of this phenomenon and
other aspects associated with the block sizes in the Padé table is indeed
desirable. In any case the results achieved so far concerning the
simultaneous approximation of two series by rational functions and their
immediate connections to the Padé approximants have been found to be of
considerable value as well as interest.
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